SUPPLEMENT FOR THE

CPL PERFORMANCE CYBER EXAM

This supplement is presented in two parts:

The PPL section.

The CPL section.

Note that the CPL Performance Cyber Exam will field questions on the PPL syllabus as well as the CPL. It is important that you make sure you are very familiar with both sections before you attempt the cyber exam.

The performance data presented in the first section of this supplement is required for some of the questions contained in the CPL Performance Cyber Exam.

Some of the questions on the PPL section of the syllabus are based on the ECHO MK 1

This is a typical single engine general aviation aeroplane. Some of the quessions are based on the Alpha, Bravo, and Charlie Loading Systems as covered in the PPL syllabus.

The CPL questions are based on the ECHO aeroplane. Echo data is given in the second section of this supplement.

Performance Supplement for the Cyber Exam.

Phone 07 3277 8840 Fax 07 3275 2178 e-mail bobtait@bobtait.com.au www.bobtait.com.au

Bob Tait's Aviation Theory School PO Box 712 Archerfield Queensland 4108 Australia

> Building 221 Qantas Ave Archerfield Airport Brisbane

CHART NO 1

CONDITIONS

ECHO MK 1

MAXIMUM RATE OF CLIMB

Flaps up Gear up 2700 RPM Full Throttle Mixture leaned above 3000 ft Cowl Flaps Open

WEIGHT	PRESSURE	PRESSURE CLIMB HEIGHT SPEED FT KIAS	RATE OF CLIMB - FPM				
LBS H F	HEIGHT FT		-20°C	0°C	+20°C	+40°C	
2650	SL 2000 4000 6000 8000 10000	84 83 81 80 78 77	925 825 720 620 525 430	855 755 655 560 465 370	780 685 590 495 405 310	710 620 525 435 430 	

CHART NO 2

CONDITIONS

Flaps up Gear up 2700 RPM Full Throttle Mixture leaned above 3000 ft Cowl Flaps Open

ECHO MK 1

TIME, FUEL AND DISTANCE TO CLIMB

MAXIMUM RATE CLIMB - ISA CONDITIONS

WEIGHT	DENSITY	CLIMB	RATE OF	FF	ROM SEA LEV	EL
LBS HEIGHT		SPEED KIAS	CLIMB FPM	TIME MIN	FUEL USED GALS	DISTANCE NM
2650	SL	84	800	0	0.0	0
	1000	83	760	1	0.4	2
	2000	83	715	3	0.8	4
	3000	82	675	4	1.1	6
	4000	81	635	6	1.6	8
	5000	81	590	7	2.0	10
	6000	80	550	9	2.4	13
	7000	79	510	11	2.9	16
	8000	78	465	13	3.3	19
	9000	78	425	15	3.8	22
	10000	77	385	18	4.3	26

Performance Supplement for the Cyber Exam.

CONDITIONS

Flaps up Gear up 2500 RPM 25 Inches of HG or Full Throttle Mixture leaned above 3000 ft Cowl Flaps Open

ECHO MK 1

TIME, FUEL AND DISTANCE TO CLIMB

NORMAL CLIMB 90 KIAS - ISA CONDITIONS

WEIGHT	DENSITY	CLIMB	RATE OF CLIMB FPM	FROM SEA LEVEL			
LBS	HEIGHT	SPEED KIAS		TIME MIN	FUEL USED GALS	DISTANCE NM	
2650	SL 1000 2000 3000 4000 5000 6000 7000 8000	90 90 90 90 90 90 90 90	530 530 530 530 530 520 475 430 385	0 2 4 6 8 9 11 14	0.0 0.4 0.7 1.1 1.4 1.8 2.2 2.6 3.1	0 3 6 9 12 15 18 22 26	
	8000	90	385	16	3.1	26	

CHART NO 4

ECHO MK 1

CRUISE PERFORMANCE PRESSURE ALITITUDE 2000 F

CONDITIONS

2650 pounds Recommended lean mixture Cowl flaps closed

NOTE For best fuel economy, operate at the leanest mixture that results in smooth engine operation or at peak EGT if an EGT indicator is installed.

		IS [0A	SA - 20 T -9°C]		[OA'	ISA Γ+11°C]			ISA +20 [OAT +31	0 °C]
RPM	MP	% BHP	KTAS	GPH	% BHP	KTAS	GPH	% BHP	KTAS	GPH
2500	24	77	130	10.3	74 70	131	9.9	72	132	9.6
	23	72	127	9.7	70	128	9.4	68	128	9.1
	22	68	123	9.1	66	124	8.8	69	124	8.6
	21	63	120	8.6	61	120	8.3	59	120	8.1
2400	25				76	132	10.1	73	133	9.8
	24	74	128	9.9	72	129	9.6	69	130	9.3
	23	70	125	9.3	67	126	9.0	65	126	8.8
	22	65	121	8.8	63	122	8.5	61	122	8.3
2300	25	76	129	10.1	73	130	9.7	71	131	9.4
	24	71	126	9.5	69	127	9.2	67	127	8.9
	23	67	123	9.0	65	123	8.7	63	123	8.5
	22	63	119	8.5	61	119	8.2	59	119	8.0
2200	24	69	124	8.3	66	124	8.9	64	125	8.6
	23	64	121	7.9	62	121	8.4	60	120	8.2
	22	60	117	7.4	58	116	7.9	56	116	7.7
	21	66	112	6.9	54	112	7.5	52	111	7.3

CHART NO 5

ECHO MK 1

CRUISE PERFORMANCE PRESSURE ALTITUDE 4000 FEET

CONDITIONS

2650 pounds Recommended lean mixture Cowl flaps closed

NOTE For best fuel economy, operate at the leanest mixture that results in smooth engine operation or at peak EGT if an EGT indicator is installed

ISA - 20 [0AT -13°C]		ISA [OAT +7°C]		ISA +20 [OAT +27°C]						
RPM	MP	% BHP	KTAS	GPH	% BHP	KTAS	GPH	% BHP	KTAS	GPH
2500	24				77	135	10.2	74	136	9.9
	23	75	131	10.0	72	132	9.7	70	132	9.4
	22	70	127	9.4	68	128	9.1	66	128	8.8
	21	66	124	8.8	63	124	8.6	61	124	8.3
2400	24	77	132	10.2	74	133	9.9	72	134	9.6
	23	72	129	9.7	70	130	9.3	67	130	9.0
	22	68	126	9.1	65	126	8.8	63	126	8.5
	21	63	122	8.6	61	121	8.3	59	121	8.1
2300	25				76	134	10.1	73	135	9.7
	24	74	130	9.9	71	131	9.5	69	131	9.2
	23	70	127	9.3	67	127	9.0	65	127	8.7
	22	65	123	8.8	63	123	8.5	61	123	8.3
2200	24	71	128	9.5	69	129	9.2	66	129	8.9
	23	67	125	9.0	65	125	8.7	62	125	8.4
	22	63	121	8.5	60	121	8.2	58	120	8.0
	21	58	116	8.0	56	116	7.7	54	115	7.5

CHART NO 6

ECHO MK 1 RANGE PROFILE 45 minutes Fixed Reserve 44 gallons useable fuel

CONDITIONS

2650 pounds Recommended lean mixture ISA conditions No wind

NOTE This chart allows for the fuel used during engine start, taxi take-off and climb, and the distance covered in climb.

Performance Supplement for the Cyber Exam.

Page PPL.5

TAKE-OFF CHART TYPE 1

EXAMPLE

Find the maximum take-off weight permitted under the conditions described below.

Airfield pressure height=4700 ftShade temperature= $+10^{\circ}\text{C}$ TODA=900 mShort wet grass surface2% down slope

Answer 1020 kg

LANDING CHART TYPE ONE

LANDING CHART

500 m

Answer

Page PPL.8

Bob Tait's Aviation Theory School

LOADING SYSTEM ALPHA Configuration 6/7 seats.

- 1. Obtain the Basic Empty weight and Index Units from current section 6.2 of the Flight Manual. [Note the basic empty weight includes unusable fuel and engine oil].
- 2. Mark Basic Empty Weight Index units on the top scale. Enter Basic Empty Weight at the top of the right hand column.
- 3. Enter the weights of load items required for flight in the appropriate squares of the right hand column. Maximum weights for load items are indicated in the index unit scales.
- 4. Total the weights in the right hand column to obtain the Zero Fuel Weight and Take-off weight.**
- 5. Draw horizontal lines on the centre of gravity envelope corresponding to the Zero Fuel Weight and the Take-off Weight.
- 6. Draw a line vertically down from the point marked on the Basic Empty Weight Index Units scale to the first load item.
 Move to the left or right on this load item scale as indicated by the arrow direction and mark a point as appropriate to the load indicated in the right hand column. [eg 154 kg load @ 77 kg divisions = 2 divisions].
- 7. Draw a line vertically down from the point marked on the first load item scale to the second load item scale and continue as per the italic note above. Continue down the scales to 'Rear Baggage' scale. Draw a line vertically from the 'Rear Baggage' point down to intersect the Zero Fuel Weight line and the take-off weight line previously marked on the envelope.
- The two points defined in 7 above must not fall beyond the boundaries of the envelope. If they do, rearrange the load and repeat steps 3 to 7.
 **DO NOT EXCEED THE MAXIMUM TAKE-OFF WEIGHT AS SHOWN ON THE ENVELOPE DIAGRAM OF THIS LOADING SYSTEM.

EXAMPLE.	Basic Empty Weight	1050 kg
	Empty Index Units	-260
	Row 1	150 kg
	Row 2 [forward facing]	160 kg
	Row 3	120 kg
	Nose Baggage	40 kg
	Rear Baggage	nil
	ZERO FUEL WEIGHT	1520 kg
	Fuel	113 kg
	TAKE-OFF WEIGHT	1633 kg

LOADING SYSTEM BRAVO

To check the loading of the aircraft before take-off, calculate the total weight and total moments as shown in the example below.

Plot the total weight and moment on the 'Centre of Gravity Envelope' chart given on the opposite page. If the point of intersection is within the boundaries of the envelope, the loading is acceptable.

AIRCRAFT LIMITATIONS

Maximum take-off weight			
Normal category		1000 kg	[2200 lbs]
Utility category		841 kg	[1850 lbs]
Maximum baggage compartment lo	bad	53 kg	[120 lbs]
Notes:			
This aircraft is fitted with standard	tanks.	[37 US Gal	lons @ 6 lbs per gal].

Empty weight includes unusable fuel and undrainable oil.

Obtain the moment index from the loading graph opposite or multiply the weight at each station by the arm of that station [see example below], and divide by 1000.

EXAMPLE:

	WEIGHT [lbs]	ARM [ins]	MOMENT [1000 inch pounds].
Empty weight	1260	80	100.80
Oil	15	32	0.48
Fuel [141 litres max].	222	91	20.20
Row 1	320	91	29.12
Row 2	350	126	44.10
Baggage	25	151	3.78
TAKE-OFF WEIGHT	2192		198.48

Check the intersection of 2192 lbs and 198.48 index units on the chart opposite.

LOADING SYSTEM BRAVO

The loading graph below converts weights in each location to a corresponding moment index. However in practice [or in the examination] it is actually both faster and much more accurate to multiply the weight by the location arm in the load sheet example at left and divide the result by 1000. The load sheet example will be provided in the examination.

Performance Supplement for the Cyber Exam.

Page PPL.13

LOADING SYSTEM CHARLIE.

To check the loading of the aircraft before take-off, carry out a summation of weight and index units as shown in the example below. Calculate the centre of gravity of the aircraft at Zero Fuel Weight and at Take-off Weight by use of the following formula:

Centre of gravity position [mm aft of the datum] = $\frac{\text{index units x 100}}{\text{gross weight}}$

Plot the position of the centre of gravity so calculated against the gross weight on the centre of gravity envelope opposite. The points plotted must fall within the boundaries of the envelope.

Aircraft limitations:

Maximum take-off weight	
Normal category	1115 kg
Utility category	925 kg
Maximum baggage compartment load	122 kg

Notes:

Aircraft empty weight includes unusable fuel and undrainable oil.

All arms are in mm aft of the datum and are given in the example below.

One index unit = 100 kg/mm

The actual aircraft empty weight and moment index will be given in the question.

EXAMPLE:

	WEIGHT [kg	ARM [mm]	MOMENT INDEX
Aircraft empty weight Full oil Row 1 Row 2 Baggage	687 7 140 160 20	1230 2750 3600 4210	19,522 86 3,850 5,760 842
ZFW	1014		30,060
Fuel	99	2950	2,920
TAKE-OFF	1113		32,980

At ZFW centre of gravity = $30,060 \times 100 \div 1014 = 2965$ [Check against weight opposite]. At TAKE-OFF centre of gravity = $32,980 \times 100 \div 1113 = 2963$ [Check against weight opposite].

LOADING SYSTEM CHARLIE

CENTRE OF GRAVITY ENVELOPE

LOADING SYSTEM CHARLIE

CENTRE OF GRAVITY POSITON - mm AFT OF THE DATUM

COMPANY POLICY

EXTRACT FROM COMPANY OPERATIONS MANUAL

Fuel Reserves

Fuel reserves [for all flights] shall be carried in accordance with Civil Aviation Advisory Publication [CAAP] No: 23-1 [0] dated March 1991.

CONVERSION FACTORS

1 inch	=	25.4 mm
1 foot	=	0.305 m
1 lb	=	0.454 kg
1 US gal	=	3.8 litres
1 US gal	=	2.72 kg

1.1 The Echo is a twin engined, six place unpressurised aircraft. It is fitted with fuel injected, turbo charged engines with fully feathering constant speed propellers. The aircraft is equipped with oxygen to allow flight at any level up to and including 20,000 feet. It has four separate cargo compartments the details of which are given on page CLP 8.

Removal of seats for freight operations.

The cabin seats are easily removeable and may be stowed in the rear compartment or left at the departure aerodrome to increase the volumetric capacity of the cabin.

AIRCRAFT FUEL CAPACITY

	Usable Fuel US Gallons	Unusable Fuel US Gallons	Total Fuel US Gallons
MAIN TANKS: Left Right	50 50	2 2	52 52
AUXILIARIES Left Right	40 40	3 3	43 43
TOTAL	180	10	190

2.1 Two main and two auxiliary fuel tanks are fitted.

2.2 The specific gravity of the fuel is 0.71, and the weight of all unusable fuel and all engine oil is included in the aircraft's Basic Empty Weight.

FUEL POLICY

2.3	Allowance for start-up and taxi is	
	Reserves [for all flights]	
	Variable reserve	
		flight fuel*
	Fixed Reserve [45 minutes @ 45% MCP]	
	Holding Fuel when required	at 45% MCP

* Flight fuel is the fuel calculated to be consumed from take-off to arriving over the top of the destination aerodrome [or alternate if required]. For the purpose of examination questions, make no allowance for climbs or descents.

- 2.4 When refuelling ,the main tanks should be filled to capacity first. The auxiliary tanks should be used only if the required fuel cannot be accommodated in the mains.
- 2.5 Use MAIN TANKS for start-up, taxi, take-off, climb and descent. Once in cruise, the AUXILIARY TANKS should be selected and all auxiliary fuel should be used before the main tanks are used.

Operating Limitations:

3.1	Never Exceed Speed [Vne]	230 kt IAS
	Normal Operating Speed [Vno or Maximum Structural Cruising]	199 kt IAS
	Maximum Flaps Extended [Vfe]	156 kt IAS
	Landing Gear Extended [Vle]	139 kt IAS
	Single engine Minimum Control Speed [Vmc]	75 kt IAS
	Manoeuvring Speed [Va or Maximum Control Deflection]	160 kt IAS

3.2 Engine Limitations.

	Take-off Power [limit of 3 minutes]	Maximum Continuous Power
Maximum RPM	3200	3200
Manifold Pressure	37.4 "Hg	34.5"Hg
Mixture	Rich	Rich
Brake Horse Power	375 per engine	340 per engine

- 3.3 Maximum Crosswind Component for take-off or landing......20 kt.
- 3.4 Maximum Tailwind Component for take-off or landing......5 kt

Performance Data.

- 4.1 Take off and Landing performance is given in the form of 'P' charts within this manual. The Echo is not to be operated into or out of any landing area that does not meet the performance limitations obtained by the use of these charts. For any sealed or gravel surface, the 'short dry grass' reference line on the take-off chart should be used.
- 4.2 Maximum Climb Performance [Maximum Rate of Climb]. The maximum climb performance expected at various combinations of Pressure Height and Gross Weight is given in the table below. Note that the performance given assumes ISA conditions. If temperature deviates from ISA, density height should be used instead of pressure height.

Pressure	Gross Weight - TWO ENGINES					
Height ISA	29	950	25	500	20)00 kg
feet.	TAS	ROC	TAS	ROC	TAS	ROC
Sea level 5000 10000 15000 20000	101 109 118 128 139	1600 1500 1400 1300 800	92 99 107 116 126	2250 2100 1950 1800 1250	82 88 95 104 112	2950 2800 2650 2500 1800
	Gross Weight - ONE ENGINE					
Pressure		G	ross Weight	- ONE ENG	GINE	
Pressure Height ISA	2	G 950 kg	ross Weight	- ONE ENO	GINE 20	000 kg
Pressure Height ISA feet.	TAS	G 950 kg ROC	ross Weight 25 TAS	- ONE ENO	GINE 20 TAS	000 kg ROC

4.3 The Cruise Climb chart.

The cruise climb chart shown below gives the distance, time and fuel required to climb in no wind from sea-level to various pressure heights under various temperature and gross weight conditions. The temperatures given at the bottom of the left-hand box are the temperatures *at* the pressure height to which the climb is being made.

An allowance for wind can be made by calculating the distance represented by the wind speed applied to the duration of the climb. [eg a wind speed of 30 kt for a six minute climb would represent a distance of 3 nm]. This distance should be added to the distance obtained from the graph for a tailwind, and subtracted for a headwind. The time and fuel required for any given climb will not be affected by wind.

The most accurate method for obtaining the figures for a climb from an aerodrome at other than sea level [eg from 5000 ft to 15000 ft], is to calculate the set of figures from sea-level to 15000 ft, then calculate the set of figures from sea-level to 5000 ft and subtract the 5000 ft figures from the 15000 ft figures.

Note that in the examination any questions on climb performance will stand alone. Climbs and descents are ignored when calculating the fuel required for any given flight stage.

Power used for cruise climb is 75% MCP with the mixture rich. Climbing indicated airspeed for a cruise climb is 120 kt .

TAS knots GROSS WEIGHT					
Pressure Ht	Temp	2950 kg	2500 kg	2000 kg	
		75% 65% 55% 45% 35%	75% 65% 55% 45% 35%	75% 65% 55% 45% 35%	
SL 5000 10,000 15,000 20,000	ISA -20	177165156142116185172160145116193179165147117201185169149116209193174150	180168159145118188172163147119196182168150119204189173152117213197178154	184171161149120192178166151121201185171153122209193177155120217201182157	
SL 5000 10,000 15,000 20,000	ISA	181168158144116189175162146117197182166148117205189171150114213198177151	184171161146118192178165148119200185170151119208192176154116217201180154	188174164149121198181169152122205189174154122213196184156118221208189157	
SL 5000 10,000 15,000 20,000	ISA +20	185 171 160 145 116 192 178 166 145 116 200 185 170 149 116 209 193 173 151 216 201 179 149	187174163147119195181166150119204188173152118212196178154221205183152	191 177 166 151 121 200 185 171 153 122 208 192 176 155 121 217 200 182 157 225 209 186 155	

4.4 The TAS that may by planned for cruise at various pressure heights, temperatures, gross weight and power are shown in the table below.

4.5 The fuel flow that can be planned for various power settings is shown in the table below. Fuel flow depends only on engine power output and is unaffected by aircraft gross weight or cruising level.

The mixture should be leaned to best economy at all cruise power settings. Rich mixture should be used only for 100% power, during a cruise climb or as a means of controlling engine overheating.

Engine Power % MCP	Mixture leaned to best economy	Mixture fully rich
100%	not available	31.7*
75%	16.3	19.7
65%	14.0	16.9
55%	11.8	14.1
45%	10.2	11.8
35%	8.6	9.3

100% power is not available above 15,000 feet.

Aircraft Weight and Balance Data:

- 5.1 The aeroplane basic empty weight includes all seats, unusable fuel and full engine oil. The actual aircraft basic empty weight and moment index will be given in the examination question.
- 5.2 Structural Weight Limitations. *All weight above zero fuel weight must be made up of fuel only. Balance data. Aircraft centre of gravity limits. 5.3 The forward limit for the centre of gravity: 2400 mm aft of the datum for gross weights of 2360 kg or less. 2560 mm at a gross weight of 2950 kg. Linear variation applies for weights between 2360 kg and 2950 kg. The aft limit for the centre of gravity is 2680 mm aft of the datum for all weights. Mean Aerodynamic Chord [MAC] data. Location of leading edge of MAC = 2190 mm aft of the datum Length of MAC = 1900 mm

The aircraft must be loaded so that the centre of gravity falls between the specified limits at zero fuel weight **and** at take-off.

5.4 Loading data:

The arms [in millimetres aft of the datum], and limiting weights for cargo compartments are given in the table below.

LOCATION	MAX LOAD	ARM [mm]
Row 1 [seats 1 & 2] Row 2 [seats 3 & 4] Row 3 [seats 5 & 6]	Pilot and one passenger two passengers two passengers	2290 3300 4300
Cargo nose Cargo left wing Cargo right wing Cargo rear Floor loading intensity	55 kg 55 kg 55 kg 155 kg 450 kg/square metre	500 3550 3550 5000
Main fuel tanks Left [useable] Right [useable] Auxiliary fuel tanks Left [useable] Right [useable]	50 US gallons 50 US gallons 40 US gallons 40 US gallons	1780 1780 2800 2800

Passenger seats may be removed to increase the volumetric capacity of the cabin. Each passenger seat weighs 5 kg and the maximum weight of cargo that can be placed on the area otherwise occupied by a seat is 82 kg.

Sample load sheet.

Moment Index is obtained by multiplying the arm in mm aft of the datum by the weight in kg and dividing the result by 10,000. In the example below, moment index is expressed to one decimal place, however in practice the nearest whole unit would be acceptable.

ITEM	WEIGHT	ARM	MOMENT INDEX.
Basic Empty Wt	1992		480.0
Row one	154	2290	35.3
Row two	160	3300	52.8
Row three	77	4300	33.1
Cargo nose	30	500	1.5
Cargo wings	60	3550	21.3
Cargo rear	100	5000	50.0
Zero Fuel Weight	2573		674.0 *
Mains fuel	250	1780	44.5
Take-off	2823		718.5 *
* Plot those pe	ints on the control	of growity onvolor	a balow

Plot these points on the centre of gravity envelope below.

The left hand vertical scale represents aircraft weight in kg. The bottom scale represents the total moment index. The centre of gravity of the loaded aeroplane must fall within the shaded area at zero fuel weight and at take-off.

TAKE-OFF CHART

Enter the chart at the pressure height of the aerodrome and move horizontally to the ambient temperature, then vertically up to the take-off distance box.

If density height is used, enter the chart at the density height scale and move vertically up to the take-off distance box, ignoring temperature.

For sealed or gravel surfaces use the short dry grass reference line.

Interpolation is permitted but extrapolation is not permitted. [If the wind is above 20 kt, use the 20 kt wind reference line].

TAKE-OFF WEIGHT CHART			
ECHO			
Power to	RPM	3200	
be used	Man Press	37.4	
Flap Setti	0°		
Take-off Safety Speed		See scale	
Take-off c	Take-off distance factor1.22		

LANDING CHART

Enter the chart at the pressure height of the aerodrome and move horizontally to the ambient temperature, then vertically up to the landing distance box.

If density height is used, enter the chart at the density height scale and move vertically up to the landing distance box, ignoring temperature.

Interpolation is permitted but extrapolation is not permitted. [If the wind is above 20 kt, use the 20 kt wind reference line].

The conditions used for landing will normally be forecast conditions. If a landing weight is being calculated to establish a take-off weight limit [ie landing weight plus the fuel burn-off], you should use the forecast QNH and temperature but zero wind.

LANDING WEIGHT CHART ECHO		
Flap Setting	45°	
Approach Speed	See scale	
Landing distance factor1.26		